Computer >> कंप्यूटर >  >> प्रोग्रामिंग >> C++

सी ++ प्रोग्राम द्विघात जांच के साथ हैश टेबल्स को लागू करने के लिए

हैश टेबल एक डेटा संरचना है जिसका उपयोग की-वैल्यू पेयर को स्टोर करने के लिए किया जाता है। हैश फ़ंक्शन का उपयोग हैश तालिका द्वारा एक अनुक्रमणिका को एक सरणी में गणना करने के लिए किया जाता है जिसमें एक तत्व डाला या खोजा जाएगा। द्विघात जांच ओपन एड्रेसेड हैश टेबल में एक टक्कर समाधान तकनीक है। यह मूल हैश इंडेक्स लेकर और एक खुले स्लॉट मिलने तक एक मनमानी द्विघात बहुपद के क्रमिक मूल्यों को जोड़कर संचालित होता है।

द्विघात जांच के साथ हैश टेबल्स को लागू करने के लिए यह एक C++ प्रोग्राम है।

एल्गोरिदम

खोज के लिए एक महत्वपूर्ण मान:

Begin
   Declare function SearchKey(int k, HashTable *ht)
      int pos = HashFunc(k, ht->s)
      intialize collisions = 0
      while (ht->t[pos].info != Emp and ht->t[pos].e != k)
         pos = pos + 2 * ++collisions -1
         if (pos >= ht->s)
            pos = pos - ht->s
      return pos
End.

सम्मिलित करने के लिए:

Begin
   Declare function Insert(int k, HashTable *ht)
      int pos = SearchKey(k, ht)
      if (ht->t[pos].info != Legi)
         ht->t[pos].info = Legi
         ht->t[pos].e = k
End.

प्रदर्शन के लिए:

Begin
   Declare function display(HashTable *ht)
      for (int i = 0; i < ht->s; i++)
         int value = ht->t[i].e
         if (!value)
            print"Position: "
               print the current position
            Print" Element: Null"
         else
            print"Position: "
               print the current position
            Print" Element: "
               Print the element.
End.

रिहाश फंक्शन के लिए:

Begin
   Declare function Rehash(HashTable *ht)
      int s = ht->s
      HashTableEntry *t= ht->t
      ht= initiateTable(2 * s)
      for (int i = 0; i < s; i++)
         if (t[i].info == Legi)
            Insert(t[i].e, ht)
      free(t)
      return ht
End.
Source Code:

उदाहरण कोड

#include <iostream>
#include <cstdlib>
#define T_S 10
using namespace std;
enum EntryType {
   Legi, Emp, Del};
   struct HashTableEntry {
      int e;
      enum EntryType info;
   };
   struct HashTable {
      int s;
      HashTableEntry *t;
   };
   bool isPrime (int n) {
   if (n == 2 || n == 3)
      return true;
   if (n == 1 || n % 2 == 0)
      return false;
   for (int i = 3; i * i <= n; i += 2)
      if (n % i == 0)
         return false;
   return true;
}
int nextPrime(int n) {
   if (n <= 0)
      n == 3;
   if (n % 2 == 0)
      n++;
   for (; !isPrime( n ); n += 2);
      return n;
}
int HashFunc(int k, int s) {
   return k % s;
}
HashTable *initiateTable(int s) {
   HashTable *ht;
   if (s < T_S) {
      cout<<"Table Size is Too Small"<<endl;
      return NULL;
   }
   ht= new HashTable;
   if (ht == NULL) {
      cout<<"Out of Space"<<endl;
      return NULL;
   }
   ht->s = nextPrime(s);
   ht->t = new HashTableEntry [ht->s];
   if (ht->t == NULL) {
      cout<<"Table Size is Too Small"<<endl;
      return NULL;
   }
   for (int i = 0; i < ht->s; i++) {
      ht->t[i].info = Emp;
      ht->t[i].e = NULL;
   }
   return ht;
}
int SearchKey(int k, HashTable *ht) {
   int pos = HashFunc(k, ht->s);
   int collisions = 0;
   while (ht->t[pos].info != Emp && ht->t[pos].e != k) {
      pos = pos + 2 * ++collisions -1;
      if (pos >= ht->s)
         pos = pos - ht->s;
   }
   return pos;
}
void Insert(int k, HashTable *ht) {
   int pos = SearchKey(k, ht);
   if (ht->t[pos].info != Legi) {
      ht->t[pos].info = Legi;
      ht->t[pos].e = k;
   }
}
HashTable *Rehash(HashTable *ht) {
   int s = ht->s;
   HashTableEntry *t= ht->t;
   ht= initiateTable(2 * s);
   for (int i = 0; i < s; i++) {
      if (t[i].info == Legi)
         Insert(t[i].e, ht);
   }
   free(t);
   return ht;
}
void display(HashTable *ht) {
   for (int i = 0; i < ht->s; i++) {
      int value = ht->t[i].e;
      if (!value)
         cout<<"Position: "<<i + 1<<" Element: Null"<<endl;
      else
         cout<<"Position: "<<i + 1<<" Element: "<<value<<endl;
   }
}
int main() {
   int v, s, pos, i = 1;
   int c;
   HashTable *ht;
   while(1) {
      cout<<"1.Initialize size of the table"<<endl;
      cout<<"2.Insert element into the table"<<endl;
      cout<<"3.Display Hash Table"<<endl;
      cout<<"4.Rehash The Table"<<endl;
      cout<<"5.Exit"<<endl;
      cout<<"Enter your choice: ";
      cin>>c;
      switch(c) {
         case 1:
            cout<<"Enter size of the Hash Table: ";
            cin>>s;
            ht = initiateTable(s);
            cout<<"Size of Hash Table: "<<nextPrime(s);
         break;
         case 2:
            if (i > ht->s) {
               cout<<"Table is Full, Rehash the table"<<endl;
               continue;
            }
            cout<<"Enter element to be inserted: ";
            cin>>v;
            Insert(v, ht);
            i++;
         break;
         case 3:
            display(ht);
         break;
         case 4:
            ht = Rehash(ht);
         break;
         case 5:
            exit(1);
         default:
            cout<<"\nEnter correct option\n";
      }
   }
   return 0;
}

आउटपुट

1.Initialize size of the table
2.Insert element into the table
3.Display Hash Table
4.Rehash The Table
5.Exit
Enter your choice: 1
Enter size of the Hash Table: 4
Table Size is Too Small
Size of Hash Table: 51.Initialize size of the table
2.Insert element into the table
3.Display Hash Table
4.Rehash The Table
5.Exit
Enter your choice: 1
Enter size of the Hash Table: 10
Size of Hash Table: 111.Initialize size of the table
2.Insert element into the table
3.Display Hash Table
4.Rehash The Table
5.Exit
Enter your choice: 2
Enter element to be inserted: 1
1.Initialize size of the table
2.Insert element into the table
3.Display Hash Table
4.Rehash The Table
5.Exit
Enter your choice: 2
Enter element to be inserted: 2
1.Initialize size of the table
2.Insert element into the table
3.Display Hash Table
4.Rehash The Table
5.Exit
Enter your choice: 2
Enter element to be inserted: 3
1.Initialize size of the table
2.Insert element into the table
3.Display Hash Table
4.Rehash The Table
5.Exit
Enter your choice: 2
Enter element to be inserted: 4
1.Initialize size of the table
2.Insert element into the table
3.Display Hash Table
4.Rehash The Table
5.Exit
Enter your choice: 2
Enter element to be inserted: 5
1.Initialize size of the table
2.Insert element into the table
3.Display Hash Table
4.Rehash The Table
5.Exit
Enter your choice: 2
Enter element to be inserted: 6
1.Initialize size of the table
2.Insert element into the table
3.Display Hash Table
4.Rehash The Table
5.Exit
Enter your choice: 2
Enter element to be inserted: 7
1.Initialize size of the table
2.Insert element into the table
3.Display Hash Table
4.Rehash The Table
5.Exit
Enter your choice: 2
Enter element to be inserted: 8
1.Initialize size of the table
2.Insert element into the table
3.Display Hash Table
4.Rehash The Table
5.Exit
Enter your choice: 2
Enter element to be inserted: 9
1.Initialize size of the table
2.Insert element into the table
3.Display Hash Table
4.Rehash The Table
5.Exit
Enter your choice: 2
Enter element to be inserted: 10
1.Initialize size of the table
2.Insert element into the table
3.Display Hash Table
4.Rehash The Table
5.Exit
Enter your choice: 2
Enter element to be inserted: 11
1.Initialize size of the table
2.Insert element into the table
3.Display Hash Table
4.Rehash The Table
5.Exit
Enter your choice: 2
Table is Full, Rehash the table
1.Initialize size of the table
2.Insert element into the table
3.Display Hash Table
4.Rehash The Table
5.Exit
Enter your choice: 3
Position: 1 Element: 11
Position: 2 Element: 1
Position: 3 Element: 2
Position: 4 Element: 3
Position: 5 Element: 4
Position: 6 Element: 5
Position: 7 Element: 6
Position: 8 Element: 7
Position: 9 Element: 8
Position: 10 Element: 9
Position: 11 Element: 10
1.Initialize size of the table
2.Insert element into the table
3.Display Hash Table
4.Rehash The Table
5.Exit
Enter your choice: 4
1.Initialize size of the table
2.Insert element into the table
3.Display Hash Table
4.Rehash The Table
5.Exit
Enter your choice: 3
Position: 1 Element: Null
Position: 2 Element: 1
Position: 3 Element: 2
Position: 4 Element: 3
Position: 5 Element: 4
Position: 6 Element: 5
Position: 7 Element: 6
Position: 8 Element: 7
Position: 9 Element: 8
Position: 10 Element: 9
Position: 11 Element: 10
Position: 12 Element: 11
Position: 13 Element: Null
Position: 14 Element: Null
Position: 15 Element: Null
Position: 16 Element: Null
Position: 17 Element: Null
Position: 18 Element: Null
Position: 19 Element: Null
Position: 20 Element: Null
Position: 21 Element: Null
Position: 22 Element: Null
Position: 23 Element: Null
1.Initialize size of the table
2.Insert element into the table
3.Display Hash Table
4.Rehash The Table
5.Exit
Enter your choice: 2
Enter element to be inserted: 20
1.Initialize size of the table
2.Insert element into the table
3.Display Hash Table
4.Rehash The Table
5.Exit
Enter your choice: 5

  1. बबल सॉर्ट को लागू करने के लिए C++ प्रोग्राम

    बबल सॉर्ट तुलना आधारित सॉर्टिंग एल्गोरिदम है। इस एल्गोरिथम में आसन्न तत्वों की तुलना की जाती है और सही क्रम बनाने के लिए उनकी अदला-बदली की जाती है। यह एल्गोरिथम अन्य एल्गोरिदम की तुलना में सरल है, लेकिन इसमें कुछ कमियां भी हैं। यह एल्गोरिथ्म बड़ी संख्या में डेटा सेट के लिए उपयुक्त नहीं है। छँटाई कार

  1. रेडिक्स सॉर्ट को लागू करने के लिए C++ प्रोग्राम

    मूलांक छँटाई गैर-तुलनात्मक छँटाई एल्गोरिथ्म है। यह सॉर्टिंग एल्गोरिदम समान स्थिति और मान साझा करने वाले अंकों को समूहीकृत करके पूर्णांक कुंजियों पर काम करता है। मूलांक एक संख्या प्रणाली का आधार है। जैसा कि हम जानते हैं कि दशमलव प्रणाली में मूलांक या आधार 10 होता है। इसलिए कुछ दशमलव संख्याओं को छांटन

  1. C++ प्रोग्राम जटिलता की कमी के साथ त्वरित क्रम को लागू करने के लिए

    त्वरित छँटाई फूट डालो और जीतो पर आधारित है। इस एल्गोरिदम की औसत समय जटिलता ओ (एन * लॉग (एन)) है लेकिन सबसे खराब स्थिति जटिलता ओ (एन ^ 2) है। सबसे खराब स्थिति की संभावना को कम करने के लिए यहां क्विकसॉर्ट को रैंडमाइजेशन का उपयोग करके लागू किया गया है। एल्गोरिदम विभाजन(int a[], int l,int h) Begin